- italic: Definition
- Bold: Theorem/Corollary
If you’re looking for summaries, you may be interested in Cheatsheets or Materi Statmat 2
Content by Hogg & Craig, 8th ed
Chapter 1: Probability and distributions
- 1.1 Introduction
- 1.2 Sets : See sets
- 1.3 The Probability Set Function
- 1.4 Conditional Probability and Independence
- 1.5 Random Variables
- 1.6 Discrete Random Variables
- 1.7 Continuous Random Variables
- 1.8 Expectation of Random Variable
- 1.9 Some Special Expectations
- 1.10 Important Inequalities
Chapter 2: Multivariate distributions
- 2.1 Distributions of Two Random Variables
- 2.2 Transformations: Bivariate Random Variables
- 2.3 Conditional Distributions and Expectations
- 2.6 Extension to Several Random Variables
Chapter 3: Some special distributions
- 3.1 The Binomial and Related Distributions
- 3.2 The Poisson Distribution
- 3.3 The Gamma, Chi-square, and Beta Distributions
- 3.4 The Normal Distribution
- 3.5 The Multivariate Normal Distribution
- 3.6 t- and F-Distributions
- 3.7 *Mixture Distributions
Chapter 4: Some elementary statistical inferences
- 4.1 Sampling and Statistics
- 4.2 Confidence Intervals
- 4.4 Order Statistics
- 4.5 Introduction to Hypothesis Testing
Chapter 5: Concistency and limiting distributions
- 5.1 Convergence in Probability
- 5.2 Convergence in Distribution
- 5.3 Central Limit Theorem
- 5.4 Extensions to Multivariate Distributions
Chapter 6: Maximum likelihood methods
- 6.1 Maximum Likelihood Estimation
- 6.2 Rao-Cramér Lower Bound and Efficiency
- 6.3 Maximum Likelihood Tests
Chapter 7: Sufficiency
- 7.1 Measures of Quality Estimators
- 7.2 A Sufficient Statistic for a Parameter
- 7.3 Properties of a Sufficient Statistic
- 7.4 Completeness and Uniqueness
- 7.5 The Exponential Class of Distributions
- 7.6 Functions of Parameter TODO: insert examples
- 7.7 The Case of Several Parameters
Chapter 8: Optimal Tests of Hypotheses
Definition hierarchy
Probability Fundamentals
- Random Variables
- Expectation & Moments
- Convergence
Statistical Inference
- Statistics
- Estimation
- Estimator
- Unbiased estimator :
- MVUE : unbiased, lowest variance
- UMVUE : complete sufficient, unbiased
- Efficient Estimator : Attains Rao-Cramér bound ()
- Consistent Estimator :
- Unbiased estimator :
- Methods
- Estimator
- Information Theory
Hypothesis Testing
Distribution Families
Miscellaneous
Cheatsheets
- Continuous Distributions
- Discrete Distributions
- Common Expectation and Variance Operations
- Common Distribution Equations
- Common Confidence Intervals
Exercises
References
- Hogg, R. V., McKean, J. W., & Craig, A. T. (2019). Introduction to Mathematical Statistics (8th ed.). Pearson.
- Hogg, R. V., & Craig, A. T. (1995). Introduction to mathematical statistics (5th ed.). Prentice Hall.
Author notes
- See also Materi Statmat 2