FAZuH's Notes

  • Definition
  • Properties
  • See also
  • Related theorems
Home

❯

mathematics

❯

Introduction to Mathematical Statistics

❯

Maximum Likelihood Estimator (mle)
  • Definition
  • Properties
  • See also
  • Related theorems

Maximum Likelihood Estimator (mle)

Oct 21, 20251 min read

Definition

Let

  • X : Observed data
  • θ : Parameter
  • L(θ;X) : Likelihood function

If θ^=ArgmaxL(θ;X)

Then θ^ is a maximum likelihood estimator (mle) of θ

Properties

The MLE has the following properties:

  1. Consistenty θ^P​θketika n→∞
  2. Asymptotic normality n​(θ^−θ)d​N(0,V) Where V is covariance matrix.
  3. Asymptotic efficiency V=I(θ)−1 Where I(θ)−1 is Rao-Cramer Lower Bound

See also

  • Finding Maximum Likelihood Estimator

Related theorems

  • Theorem 6.1.2

Recent Notes

  • index

    Oct 31, 2025

    • linker-exclude
  • tugas-kelompok-2_202510301543

    Oct 31, 2025

    • mathstat7.5

      Oct 31, 2025

      • theorem-neyman-theorem_202508052229

        Oct 30, 2025

        • theorem-central-limit-theorem_202509190924

          Oct 30, 2025

          Graph View

          Backlinks

          • 4.2-confidence-intervals_202507220822
          • Def-estimator
          • Def-likelihood-function
          • exercises-from-5th-ed-book_202509261532
          • mathstat6.1
          • Introduction to Mathematical Statistics

          Created with Quartz v4.5.2 © 2025

          • GitHub
          • Discord Community