<< 5.2 Convergence in Distribution.md | 5.4 Extensions to Multivariate Distributions.md >>

Theorem 5.3.1: Central limit theorem

Let

  • : Observations of a random sample, with
    • Common mean
    • Common variance

If

Y_{n} & = \frac{ \sum_{i=1}^n X_{i} - n\mu }{\sqrt{ n }\sigma} \\ & = \frac{\bar{X}_{n}-\mu}{\sigma/\sqrt{ n }} \end{align} $$ Then $$ Y_{n}\xrightarrow D N(0,1) $$

Note

Recall that the notation was introduced in convergence in distribution’s remark.

We often state the central limit theorem as:

One of the key applications of this theorem is for statistical inference, as shown in Example 5.3.1-5.3.6 in the source book.

Link to original

Exercise

Hogg & Craig 5th ed. 5.33.

Let

  • : Random sample of size
  • : Mean of

Show that

Answer

Diketahui memiliki mean dan variansi . Perhatikan bahwa dan sehingga .

Berdasarkan law of large numbers, . Sehingga berdasarkan Theorem 1,

Berdasarkan central limit theorem, . Sehingga berdasarkan Theorem 3,

Hogg & Craig 5th ed. 5.34.

Let

  • : Random sample of size
  • : Mean of
  • : Variance of

Prove that

Answer

Karena , berdasarkan central limit theorem:

Berdasarkan law of large numbers, , sehingga berdasarkan Theorem 2, , dan berdasarkan Theorem 1, .

Perhatikan bahwa

sehingga berdasarkan Theorem 3, diperoleh