<< 5.2 Convergence in Distribution.md | 5.4 Extensions to Multivariate Distributions.md >>
Theorem 5.3.1: Central limit theorem
Let
- : Observations of a random sample, with
- Common mean
- Common variance
If
Y_{n} & = \frac{ \sum_{i=1}^n X_{i} - n\mu }{\sqrt{ n }\sigma} \\ & = \frac{\bar{X}_{n}-\mu}{\sigma/\sqrt{ n }} \end{align} $$ Then $$ Y_{n}\xrightarrow D N(0,1) $$Link to originalNote
Recall that the notation was introduced in convergence in distribution’s remark.
We often state the central limit theorem as:
One of the key applications of this theorem is for statistical inference, as shown in Example 5.3.1-5.3.6 in the source book.
Exercise
Hogg & Craig 5th ed. 5.33.
Let
- : Random sample of size
- : Mean of
Show that
Answer
Diketahui memiliki mean dan variansi . Perhatikan bahwa dan sehingga .
Berdasarkan law of large numbers, . Sehingga berdasarkan Theorem 1,
Berdasarkan central limit theorem, . Sehingga berdasarkan Theorem 3,
Hogg & Craig 5th ed. 5.34.
Let
- : Random sample of size
- : Mean of
- : Variance of
Prove that
Answer
Karena , berdasarkan central limit theorem:
Berdasarkan law of large numbers, , sehingga berdasarkan Theorem 2, , dan berdasarkan Theorem 1, .
Perhatikan bahwa
sehingga berdasarkan Theorem 3, diperoleh