Notation X,Y,Xi: Random variables a,b,c,ci,ai: Constants/scalars X⊥Y: X and Y are independent Cov(X,Y): Covariance between X and Y TODO: Create def note on covariance Basic Operations E[c]E[X±c]E[cX]Var(X±c)Var(cX)=c=E[X]±c=cE[X]=Var(X)=c2Var(X) Multiple Random Variables E[X±Y]E[aX+bY]Var(X±Y)Var(X+Y)Var(aX+bY)=E[X]±E[Y]=aE[X]+bE[Y]=Var(X)+Var(Y)±2Cov(X,Y)=Var(X)+Var(Y)when X⊥Y=a2Var(X)+b2Var(Y)+2abCov(X,Y) Sum of Independent Variables E[i=1∑nXi]E[i=1∑nciXi]Var(i=1∑naiXi)Var(i=1∑nciXi)=i=1∑nE[Xi]=i=1∑nciE[Xi]=i=1∑nai2Var(Xi)+2i<j∑aiajCov(Xi,Xj)=i=1∑nci2Var(Xi)when all Xi are independent Special Formulas Var(X)Var(X)=E[X2]−(E[X])2=E[(X−E[X])2]