FAZuH's Notes

Home

❯

mathematics

❯

Introduction to Mathematical Statistics

❯

4.2.2 Confidence Interval for Difference in Proportion

4.2.2 Confidence Interval for Difference in Proportion

Oct 13, 20251 min read

<< 4.2.1 Confidence Intervals for Difference in Means | 4.4 Order Statistics.md >>

Let

  • X∼b(1,p1​) : Random variable (Bernoulli distribution)
  • Y∼b(1,p2​) : Random variable
  • X,Y independent
  • X1​,…,Xn1​​ : Random sample from X
  • Y1​,…,Yn2​​ : Random sample from Y
  • n=n1​+n2​

Assume the random samples are independent of one another

p1​^​−p2​^​±zα/2​n1​p1​^​(1−p1​^​)​+n2​p2​^​(1−p2​^​)​​

Recent Notes

  • index

    Oct 31, 2025

    • linker-exclude
  • tugas-kelompok-2_202510301543

    Oct 31, 2025

    • mathstat7.5

      Oct 31, 2025

      • theorem-neyman-theorem_202508052229

        Oct 30, 2025

        • theorem-central-limit-theorem_202509190924

          Oct 30, 2025

          Graph View

          Backlinks

          • internal-links-for-weekly-material_202507170955
          • 4.2.1-confidence-intervals-for-difference-in-means_202507220835
          • mathstat4.4
          • Introduction to Mathematical Statistics

          Created with Quartz v4.5.2 © 2025

          • GitHub
          • Discord Community