Definition
Let
Suppose x1∈SX1; hence, pX1(x1)>0
Then by conditional probability,
p(X2=x2∣X1=x1)=P(X1=x1)P(X1=x1,X2=x2)=pX1(x1)pX1,X2(x1,x2),∀x2∈SX2
And
- We denote $$
p_{X_{2}|X_{1}}(x_{2}|x_{1}) = \frac{p_{X_{1},X_{2}}(x_{1},x_{2})}{p_{X_{1}}(x_{1})}, \quad x_{2}\in S_{X_{2}}
- We call $p_{X_{2}|X_{1}}(x_{2}|x_{2})$ the **conditional pmf** of $X_{2}$ given that $X_{1}=x_{1}$
## Remark
Notice that $\forall x_{1}\in S_{X_{1}}$,
1. $p_{X_{2}|X_{1}}(x_{2}|x_{1})$ is nonnegative
2. $$
\begin{align}
\sum_{x_{2}}p_{X_{2}|X_{1}}(x_{2}|x_{1}) & = \sum_{x_{2}} \frac{p_{X_{1},X_{2}}(x_{1},x_{2})}{p_{X_{1}}(x_{1})} \\
& = \frac{1}{p_{X_{1}}(x_{1})} \sum_{x_{2}} p_{X_{1},X_{2}}(x_{1},x_{2}) \\
& = \frac{p_{X_{1}}(x_{1})}{p_{X_{1}}(x_{2})} \\
& = 1
\end{align}
Therefore, pX2∣X1(x2,x1) is satisfies properties of pmfs