Confidence intervals for mean (μ)
| Distribution | σ2 known? | Sample size n | (1−α)100% Confidence interval |
|---|
| N(μ,σ2) | ✅ | Any | xˉ−zα/2nσ |
| Any | ✅ | Large | xˉ−zα/2nσ |
| N(μ,σ2) | ❌ | Small | xˉ−tα/2,n−1n−1s |
| Any | ❌ | Large | xˉ−zα/2n−1s |
Confidence Intervals for Difference in Means (μX−μY)
| Distribution | σX2,σY2 known? | Sample sizes | (1−α)100% Confidence interval |
|---|
| X∼N(μX,σX2),Y∼N(μY,σY2) | ✅ | Any | (Xˉ−Yˉ)±zα/2nXσX2+nYσY2 |
| X,Y any distribution | ✅ | Large | (Xˉ−Yˉ)±zα/2nXσX2+nYσY2 |
| X∼N(μX,σ2),Y∼N(μY,σ2) | ❌ (equal variances) | Small | (Xˉ−Yˉ)±tα/2,nX+nY−2SpnX1+nY1 |
| X∼N(μX,σX2),Y∼N(μY,σY2) | ❌ (unequal variances) | Small | (Xˉ−Yˉ)±tα/2,νnXSX2+nYSY2 |
| X,Y any distribution | ❌ | Large | (Xˉ−Yˉ)±zα/2nXSX2+nYSY2 |
Notes:
- Sp=n1+n2−2(n1−1)S12+(n2−1)S22 (pooled standard deviation)
- ν=n12(n1−1)S14+n22(n2−1)S24(n1S12+n2S22)2 (Welch-Satterthwaite degrees of freedom)
Confidence Intervals for Difference in Proportions (pX−pY)
| Distribution | Sample sizes | (1−α)100% Confidence interval |
|---|
X∼Binomial(nX,pX) Y∼Binomial(nY,pY) (independent) | Large nXp^X≥5 nX(1−p^X)≥5 nYp^Y≥5 nY(1−p^Y)≥5 | p1^−p2^±zα/2n1p1^(1−p1^)+n2p2^(1−p2^) |
| (Xi,Yi)∼Multinomial(1,[p++,p+−,p−+,p−−]) (paired) | Large | p^−zα/2np^(1−p^) |
Notes:
- p^1=n1X, p^2=n2Y (sample proportions)
- For paired samples: p^d=nnumber of discordant pairs, pd is the proportion of discordant pairs