<< 5.1 Convergence in Probability.md | 5.3 Central Limit Theorem.md >>

Definition 5.2.1: Converges in distribution

Let

  • : Sequence of random variables, with
    • : cdf of
  • : Random variable
    • : cdf of
  • denote the set of all points where is continuous

If

Then

  • We say converges in distribution to
  • We write
Link to original

Remark 5.2.2: Stirling’s formula

In advanced calculus, the following approximation is derived:

Theorem 5.2.1

Theorem 5.2.2

Note

Although in

  • Hogg, R. V., McKean, J. W., & Craig, A. T. (2019). Introduction to Mathematical Statistics (8th ed.). Pearson.
Link to original
it is said stated that , the converse is actually true. So we use instead.

Theorem 5.2.3

Suppose

Then

Theorem 5.2.4

Suppose

Then

Theorem 5.2.5: Slutsky’s theorem

Let

  • : Random variables
  • : Constants

If

Then

Definition 5.2.2: Bounded in probability

Let

If

Then we say is bounded in probability

Link to original

Theorem 5.2.6

Let

  • : Sequence of random variables
  • : Random variable

If

Then is bounded in probability

Theorem 5.2.7

Let : Sequences of random variables

Suppose

  • bounded in probability

Then

TODO: Make sense of 5.2.8, 5.2.9

Theorem 5.2.8

Let : Sequence of random variables

Suppose

  • bounded in probability

Then

Theorem 5.2.9

Let : Sequence of random variables

Suppose

  • is differentiable at

Then

Theorem 5.2.10: MGF technique

Let

  • : Sequence of random variables, with
    • mgf which exists for for all
  • : Random variable, with
    • mgf which exists for

If

Then

Note

The MGF uniquely determines a distribution (when it exists in a neighborhood of zero). So if the MGFs converge, the underlying distributions must also converge.

Theorem 0

Let

  • : Sequence of random variables
  • : Constant

Then

1

Note

For convergence to a constant , convergence in probability and convergence in distribution are equivalent.

Theorem 1

Let

  • : Random variable
  • : cdf of

Then

Theorem 2

Let

  • : Random variable
  • : cdf of

If

Then

Theorem 2.5

Let

  • : Sequences of random variables
  • : Constants

If

Then

Theorem 3

Let

  • : Random variable
  • : Random variable

If

Then

Proposition 5.2.16

If

Then

Exercise

Exercise 5.1 of Hogg & Craig 5th ed.

Let denote the mean of a random sample of size from a distribution that is . Find the limiting distribution of .

Based on Theorem 5.1.1: Weak law of large numbers,

Consequently, the limiting distribution of is .

Hogg & Craig 5th ed. 5.7.

Let

Prove that converges in probability to

Answer

Karena , berarti dan . Misalkan . Maka,

Misalkan . Berdasarkan teorema Chebyshev,

Sehingga diperoleh

Berdasarkan definisi konvergen dalam probabilitas, terbukti bahwa

Hogg & Craig 5th ed. 5.10.

Let

Prove that converges in probability to

Answer

Dari Example 1 Section 5.1

converges in distribution to a random variable that has a degenerate distribution at the point .

Artinya, . Berdasarkan teorema 5.2.2, diperoleh . Misalkan . Berdasarkan teorema 5.1.4, diperoleh , sehingga terbukti bahwa konvergen dalam probabilitas ke

Hogg & Craig 5th ed. 5.12.

Let

  • : Sequence of random variables, with

Find the limiting distribution of

Answer

Diketahui mgf dari distribusi Chi-square adalah , untuk . Karena , mgf dari dapat diperoleh dengan

Karena , dengan memisalkan , , dan , dapat diperoleh

Misalkan variabel acak dengan mgf . Andaikan berdistribusi degenerate ke , yang berakibat . Karena , berdasarkan teorema 5.2.10, diperoleh . Terbukti bahwa limiting distribution dari adalah .

Hogg & Craig 5th ed. 5.13.

Let

  • : Random variable, with

Approximate

Answer

Hogg & Craig 5th ed. 5.15.

Let

  • : Sequence of random variable, with

Show that the limiting distribution of is normal with mean zero and variance .

Answer

Diketahui mgf dari distribusi adalah . Dapat diperoleh mgf dari :

Menggunakan Maclaurun series pada , perluaskan menjadi

Sehingga diperoleh

Misalkan variabel acak dengan berdistribusi . Artinya, . Berdasarkan teorema 5.2.10, karena , maka , sehingga . Terbukti bahwa limiting distribution dari adalah distribusi normal dengan mean dan variansi .

Example 1

Example 2

Footnotes

  1. Taken from Theorem 1 in Section 5.2: Convergence in Probability of Hogg & Craig 5th ed.