FAZuH's Notes

  • Definition
  • Remark
Home

❯

mathematics

❯

Introduction to Mathematical Statistics

❯

Minimum Variance Unbiased Estimator (MVUE)
  • Definition
  • Remark

Minimum Variance Unbiased Estimator (MVUE)

Oct 13, 20251 min read

Definition

Let

  • X1​,…,Xn​ : Random sample
  • Y=u(X1​,…,Xn​) : Statistic
  • θ : Parameter

If

  • Y : Unbiased estimator of θ
  • Var(Y) is lower than every other unbiased estimator of θ

Then Y is the mininum variance unbiased estimator (MVUE) of θ

Remark

We usually use Lehmann and Scheffe Theorem to prove that a statistic is MVUE.


Recent Notes

  • index

    Oct 31, 2025

    • linker-exclude
  • tugas-kelompok-2_202510301543

    Oct 31, 2025

    • mathstat7.5

      Oct 31, 2025

      • theorem-neyman-theorem_202508052229

        Oct 30, 2025

        • theorem-central-limit-theorem_202509190924

          Oct 30, 2025

          Graph View

          Backlinks

          • exercises-from-5th-ed-book_202509261532
          • mathstat7.1
          • Introduction to Mathematical Statistics
          • unique-mvue-(umvue)_202507170937
          • tugas-kelompok-2_202510301543

          Created with Quartz v4.5.2 © 2025

          • GitHub
          • Discord Community