Minimum Variance Unbiased Estimator (MVUE)

  • Definition
  • Remark
Home

❯

mathematics

❯

Introduction to Mathematical Statistics

❯

Minimum Variance Unbiased Estimator (MVUE)
  • Definition
  • Remark

Minimum Variance Unbiased Estimator (MVUE)

Oct 13, 20251 min read

Definition

Let

  • X1​,…,Xn​ : Random sample
  • Y=u(X1​,…,Xn​) : Statistic
  • θ : Parameter

If

  • Y : Unbiased estimator of θ
  • Var(Y) is lower than every other unbiased estimator of θ

Then Y is the mininum variance unbiased estimator (MVUE) of θ

Remark

We usually use Lehmann and Scheffe Theorem to prove that a statistic is MVUE.


Recent Notes

  • Likelihood Ratio Test

    Dec 12, 2025

    • Internal Links for Weekly Material

      Dec 12, 2025

      • Neyman-Pearson Theorem

        Dec 11, 2025

        • Common Distribution Equations

          Dec 11, 2025

          • 4.2 Confidence Intervals

            Dec 11, 2025

            Graph View

            Related notes

            • Chapter 7 Exercises
            • Chapter 8 Exercises
            • 7.1 Measures of Quality Estimators
            • Introduction to Mathematical Statistics
            • Unique MVUE (UMVUE)
            • Tugas Kelompok 2

            Created with Quartz v4.5.2 © 2026

            • GitHub
            • Discord Community