Theorem
Let A,B,C be any set
Then
A−(B∪C)A−(B∩C)=(A−B)∩(A−C)=(A−B)∪(A−B)
Proof
First law
A−(B∪C)=(A−B)∩(A−C)
Prove x∈A−(B∪C)⟺x∈(A−B)∩(A−C)
(⇒) Assume x∈A−(B∪C)
- Then x∈A and x∈/B∪C
- So x∈A and ¬(x∈B∨x∈C)
- Thus x∈A and x∈/B and x∈/C
- Therefore (x∈A∧x∈/B) and (x∈A∧x∈/C)
- So x∈A−B and x∈A−C
- Thus x∈(A−B)∩(A−C)
(⇐) Assume x∈(A−B)∩(A−C)
- Then x∈A−B and x∈A−C
- So (x∈A∧x∈/B) and (x∈A∧x∈/C)
- Thus x∈A and x∈/B and x∈/C
- Therefore x∈A and ¬(x∈B∨x∈C)
- So x∈A and x∈/B∪C
- Thus x∈A−(B∪C)
Second law
A−(B∩C)=(A−B)∪(A−C)
Prove x∈A−(B∩C)⟺x∈(A−B)∪(A−C)
(⇒) Assume x∈A−(B∩C)
- Then x∈A and x∈/B∩C
- So x∈A and ¬(x∈B∧x∈C)
- Thus x∈A and (x∈/B∨x∈/C)
- Case 1: x∈A and x∈/B, so x∈A−B
- Case 2: x∈A and x∈/C, so x∈A−C
- Therefore x∈(A−B)∪(A−C)
(⇐) Assume x∈(A−B)∪(A−C)
- Then x∈A−B or x∈A−C
- Case 1: x∈A−B, so x∈A and x∈/B, thus x∈/B∩C
- Case 2: x∈A−C, so x∈A and x∈/C, thus x∈/B∩C
- In both cases: x∈A and x∈/B∩C
- Therefore x∈A−(B∩C)