Theorem
Let A,B be any set
Then
(A∩B)C=AC∪BC(A∪B)C=AC∩BC
Proof
First law
(A∩B)C=AC∪BC
Prove x∈(A∩B)C⟺x∈AC∪BC
(⇒) Assume x∈(A∩B)C
- Then x∈/A∩B
- So ¬(x∈A∧x∈B)
- By logic: ¬(x∈A)∨¬(x∈B)
- Thus x∈/A or x∈/B
- Therefore x∈AC or x∈BC
- So x∈AC∪BC
(⇐) Assume x∈AC∪BC
- Then x∈AC or x∈BC
- So x∈/A or x∈/B
- Thus ¬(x∈A∧x∈B)
- Therefore x∈/A∩B
- So x∈(A∩B)C
Second law
(A∪B)C=AC∩BC
Prove x∈(A∪B)C⟺x∈AC∩BC
(⇒) Assume x∈(A∪B)C
- Then x∈/A∪B
- So ¬(x∈A∨x∈B)
- By logic: ¬(x∈A)∧¬(x∈B)
- Thus x∈/A and x∈/B
- Therefore x∈AC and x∈BC
- So x∈AC∩BC
(⇐) Assume x∈AC∩BC
- Then x∈AC and x∈BC
- So x∈/A and x∈/B
- Thus ¬(x∈A∨x∈B)
- Therefore x∈/A∪B
- So x∈(A∪B)C