<< 2.3 The Completeness Property of R | 2.5 Intervals >>
Proposition: Example 2.4.1 (a)
Let that is bounded above. : **$$ \sup(a + S) = a + \sup S
Proposition: Example 2.4.1 (b)
Let . , then **$$ \sup A \leq \inf B
Definition: Bounded function
Misalkan diberikan suatu fungsi dan range ,
-
Fungsi dikatakan terbatas di atas jika terbatas di atas, yakni
-
Fungsi dikatakan terbatas di bawah jika terbatas di bawah, yakni
-
Fungsi dikatakan terbatas jika terbatas di atas dan di bawah, yang ekivalen dengan
Proposition: Example 2.4.2 (a)
Misalkan fungsi bernilai real dengan domain . Misalkan pula terbatas. Jika untuk setiap maka,
Proposition: Example 2.4.2 (c)
Misalkan fungsi bernilai real dengan domain . Misalkan pula terbatas. Jika untuk setiap maka,
2.4.3 Theorem: Archimedean property
If , then there exists such that .
Other forms:
-
.
-
There is always a bigger natural number than any arbitrary real number.
For proofing, use:
- Proof by contradiction
- Completeness Property
2.4.4 Corollary: From 2.4.3
If , then .
2.4.5 Corollary
If , then there exists such that .
2.4.6 Corollary
If , then there exists such that .
2.4.7 Theorem: Existence of irrational number
There exists a positive real number such that .
2.4.8 Theorem: Density of rational numbers at R
If such that , then there exists such that .
2.4.9 Corollary: From 2.4.8
If such that , then there exists such that .