<< 2.3 The Completeness Property of R | 2.5 Intervals >>

Proposition: Example 2.4.1 (a)

Let that is bounded above. : **$$ \sup(a + S) = a + \sup S

Proposition: Example 2.4.1 (b)

Let . , then **$$ \sup A \leq \inf B

Definition: Bounded function

Misalkan diberikan suatu fungsi dan range ,

  • Fungsi dikatakan terbatas di atas jika terbatas di atas, yakni

  • Fungsi dikatakan terbatas di bawah jika terbatas di bawah, yakni

  • Fungsi dikatakan terbatas jika terbatas di atas dan di bawah, yang ekivalen dengan

Proposition: Example 2.4.2 (a)

Misalkan fungsi bernilai real dengan domain . Misalkan pula terbatas. Jika untuk setiap maka,

Proposition: Example 2.4.2 (c)

Misalkan fungsi bernilai real dengan domain . Misalkan pula terbatas. Jika untuk setiap maka,

2.4.3 Theorem: Archimedean property

If , then there exists such that .

Other forms:

  • .

  • There is always a bigger natural number than any arbitrary real number.

For proofing, use:

2.4.4 Corollary: From 2.4.3

If , then .

2.4.5 Corollary

If , then there exists such that .

2.4.6 Corollary

If , then there exists such that .

2.4.7 Theorem: Existence of irrational number

There exists a positive real number such that .

2.4.8 Theorem: Density of rational numbers at R

If such that , then there exists such that .

2.4.9 Corollary: From 2.4.8

If such that , then there exists such that .