Theorem Let u,v,w : Vectors in Rn k : Any scalar Then u⋅v=v⋅u (Symmetric property) u⋅(v+w)=u⋅v+u⋅w (Distributive property) k(u⋅v)=(ku)⋅v (Homogeneity property) v⋅v≥0. v⋅v=0⟺v=0 (Positivity property)