Basic Definition

Indefinite Integral: The antiderivative of function

Definite Integral: Net area under curve from to

Note: For brevity, we write instead of , instead of , etc. We omit when context is clear. Constant of integration is implied for indefinite integrals.

Basic Integration Rules

Constant and Power Rules

\begin{align} \int c &= cx + C \quad \text{(constant)} \\ \int x^n &= \frac{x^{n+1}}{n+1} + C \quad \text{(power rule, } n \neq -1\text{)} \\ \int \frac{1}{x} &= \ln|x| + C \\ \int \sqrt{x} &= \frac{2}{3}x^{3/2} + C \\ \int \frac{1}{x^2} &= -\frac{1}{x} + C \\ \int \frac{1}{\sqrt{x}} &= 2\sqrt{x} + C \end{align}

Linear Combination Rules

\begin{align} \int cf &= c\int f \quad \text{(constant multiple)} \\ \int [f + g] &= \int f + \int g \quad \text{(sum rule)} \\ \int [f - g] &= \int f - \int g \quad \text{(difference rule)} \end{align}

General Power of Function

Special case ():

Examples: \begin{align} \int \sin^3 x \cos x &= \frac{\sin^4 x}{4} + C \\ \int (x^2+1)^5 \cdot 2x &= \frac{(x^2+1)^6}{6} + C \\ \int \frac{2x}{x^2+1} &= \ln(x^2+1) + C \end{align}

Exponential and Logarithmic Functions

\begin{align} \int e^x &= e^x + C \\ \int a^x &= \frac{a^x}{\ln a} + C \\ \int e^{ax} &= \frac{1}{a}e^{ax} + C \\ \int \frac{1}{x} &= \ln|x| + C \\ \int \ln x &= x\ln x - x + C \\ \int \log_a x &= \frac{x\ln x - x}{\ln a} + C \\ \int \frac{f'}{f} &= \ln|f| + C \end{align}

Trigonometric Functions

\begin{align} \int \sin x &= -\cos x + C \\ \int \cos x &= \sin x + C \\ \int \tan x &= -\ln|\cos x| + C = \ln|\sec x| + C \\ \int \cot x &= \ln|\sin x| + C \\ \int \sec x &= \ln|\sec x + \tan x| + C \\ \int \csc x &= -\ln|\csc x + \cot x| + C \\ \int \sec^2 x &= \tan x + C \\ \int \csc^2 x &= -\cot x + C \\ \int \sec x \tan x &= \sec x + C \\ \int \csc x \cot x &= -\csc x + C \end{align}

Inverse Trigonometric Functions

\begin{align} \int \frac{1}{\sqrt{1-x^2}} &= \arcsin x + C = -\arccos x + C \\ \int \frac{1}{1+x^2} &= \arctan x + C = -\text{arccot } x + C \\ \int \frac{1}{x\sqrt{x^2-1}} &= \text{arcsec } |x| + C \\ \int \frac{1}{\sqrt{a^2-x^2}} &= \arcsin\frac{x}{a} + C \\ \int \frac{1}{a^2+x^2} &= \frac{1}{a}\arctan\frac{x}{a} + C \\ \int \frac{1}{x\sqrt{x^2-a^2}} &= \frac{1}{a}\text{arcsec}\frac{|x|}{a} + C \end{align}

Hyperbolic Functions

\begin{align} \int \sinh x &= \cosh x + C \\ \int \cosh x &= \sinh x + C \\ \int \tanh x &= \ln|\cosh x| + C \\ \int \coth x &= \ln|\sinh x| + C \\ \int \text{sech } x &= \arctan(\sinh x) + C \\ \int \text{csch } x &= \ln\left|\tanh\frac{x}{2}\right| + C \\ \int \text{sech}^2 x &= \tanh x + C \\ \int \text{csch}^2 x &= -\coth x + C \end{align}

Integration Techniques

Substitution (u-substitution)

If , then :

Example:

Integration by Parts

LIATE rule (priority for choosing ): Logarithmic, Inverse trig, Algebraic, Trigonometric, Exponential

Common patterns: \begin{align} \int x e^x &= xe^x - e^x + C \\ \int x \sin x &= -x\cos x + \sin x + C \\ \int x^n e^x &= x^n e^x - n\int x^{n-1}e^x \\ \int e^{ax}\sin bx &= \frac{e^{ax}(a\sin bx - b\cos bx)}{a^2+b^2} + C \\ \int e^{ax}\cos bx &= \frac{e^{ax}(a\cos bx + b\sin bx)}{a^2+b^2} + C \end{align}

Partial Fractions

For rational functions where :

Linear factors:

Repeated linear factors:

Quadratic factors:

Complete the square and use substitution or arctan formula

Trigonometric Substitution

For : Use ,

For : Use ,

For : Use ,

Common Integration Patterns

\begin{align} \int e^{ax} &= \frac{1}{a}e^{ax} + C \\ \int \sin ax &= -\frac{1}{a}\cos ax + C \\ \int \cos ax &= \frac{1}{a}\sin ax + C \\ \int (ax+b)^n &= \frac{(ax+b)^{n+1}}{a(n+1)} + C \quad \text{(for } n \neq -1\text{)} \\ \int \frac{1}{ax+b} &= \frac{1}{a}\ln|ax+b| + C \\ \int x^n e^x &= x^n e^x - n\int x^{n-1}e^x \quad \text{(reduction formula)} \end{align}

Special Integrals

\begin{align} \int \frac{1}{x^2+a^2} &= \frac{1}{a}\arctan\frac{x}{a} + C \\ \int \frac{1}{x^2-a^2} &= \frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right| + C \\ \int \frac{1}{\sqrt{x^2+a^2}} &= \ln|x+\sqrt{x^2+a^2}| + C \\ \int \frac{1}{\sqrt{x^2-a^2}} &= \ln|x+\sqrt{x^2-a^2}| + C \\ \int \frac{1}{\sqrt{a^2-x^2}} &= \arcsin\frac{x}{a} + C \\ \int \sqrt{a^2-x^2} &= \frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\arcsin\frac{x}{a} + C \\ \int \sqrt{x^2+a^2} &= \frac{x}{2}\sqrt{x^2+a^2} + \frac{a^2}{2}\ln|x+\sqrt{x^2+a^2}| + C \end{align}

Properties of Definite Integrals

\begin{align} \int_a^b f\,dx &= -\int_b^a f\,dx \\ \int_a^a f\,dx &= 0 \\ \int_a^b f\,dx &= \int_a^c f\,dx + \int_c^b f\,dx \\ \int_a^b cf\,dx &= c\int_a^b f\,dx \\ \int_a^b [f \pm g]\,dx &= \int_a^b f\,dx \pm \int_a^b g\,dx \end{align}

Symmetry Properties

Even function ():

Odd function ():

Fundamental Theorem of Calculus

Part 1: If , then

Part 2: If , then:

Leibniz Rule (differentiating under integral):

Applications in Statistics

Probability Density Functions

Expected Value

Variance

Cumulative Distribution Function

Moment Generating Function