Cheatsheet: Derivative Rules

Basic Definition

Derivative: The instantaneous rate of change of function at point

Alternative notations:

Note: For brevity, we write instead of , instead of , etc.

Basic Derivative Rules

Constant and Power Rules

\begin{align} \frac{d}{dx} c &= 0 \quad \text{(constant)} \\ \frac{d}{dx} x^n &= nx^{n-1} \quad \text{(power rule)} \\ \frac{d}{dx} cx &= c \\ \frac{d}{dx} \frac{1}{x} &= -\frac{1}{x^2} \\ \frac{d}{dx} \sqrt{x} &= \frac{1}{2\sqrt{x}} \end{align}

Linear Combination Rules

\begin{align} \frac{d}{dx}[cf] &= cf' \quad \text{(constant multiple)} \\ \frac{d}{dx}[f + g] &= f' + g' \quad \text{(sum rule)} \\ \frac{d}{dx}[f - g] &= f' - g' \quad \text{(difference rule)} \end{align}

Product and Quotient Rules

\begin{align} \frac{d}{dx}[fg] &= f'g + fg' \quad \text{(product rule)} \\ \frac{d}{dx}\left[\frac{f}{g}\right] &= \frac{f'g - fg'}{g^2} \quad \text{(quotient rule)} \end{align}

Generalized product rule (for functions):

Chain Rule

\begin{align} \frac{d}{dx}[f(g)] &= f'(g) \cdot g' \\ \frac{dy}{dx} &= \frac{dy}{du} \cdot \frac{du}{dx} \quad \text{(where } u = g) \end{align}

Multiple composition:

Exponential and Logarithmic Functions

\begin{align} \frac{d}{dx} e^x &= e^x \\ \frac{d}{dx} a^x &= a^x \ln a \\ \frac{d}{dx} e^f &= e^f f' \\ \frac{d}{dx} \ln x &= \frac{1}{x} \\ \frac{d}{dx} \ln |x| &= \frac{1}{x} \\ \frac{d}{dx} \log_a x &= \frac{1}{x \ln a} \\ \frac{d}{dx} \ln f &= \frac{f'}{f} \end{align}

Trigonometric Functions

\begin{align} \frac{d}{dx} \sin x &= \cos x \\ \frac{d}{dx} \cos x &= -\sin x \\ \frac{d}{dx} \tan x &= \sec^2 x = \frac{1}{\cos^2 x} \\ \frac{d}{dx} \cot x &= -\csc^2 x = -\frac{1}{\sin^2 x} \\ \frac{d}{dx} \sec x &= \sec x \tan x \\ \frac{d}{dx} \csc x &= -\csc x \cot x \end{align}

Inverse Trigonometric Functions

\begin{align} \frac{d}{dx} \arcsin x &= \frac{1}{\sqrt{1-x^2}} \\ \frac{d}{dx} \arccos x &= -\frac{1}{\sqrt{1-x^2}} \\ \frac{d}{dx} \arctan x &= \frac{1}{1+x^2} \\ \frac{d}{dx} \text{arccot } x &= -\frac{1}{1+x^2} \\ \frac{d}{dx} \text{arcsec } x &= \frac{1}{|x|\sqrt{x^2-1}} \\ \frac{d}{dx} \text{arccsc } x &= -\frac{1}{|x|\sqrt{x^2-1}} \end{align}

Hyperbolic Functions

\begin{align} \frac{d}{dx} \sinh x &= \cosh x \\ \frac{d}{dx} \cosh x &= \sinh x \\ \frac{d}{dx} \tanh x &= \text{sech}^2 x = \frac{1}{\cosh^2 x} \\ \frac{d}{dx} \coth x &= -\text{csch}^2 x = -\frac{1}{\sinh^2 x} \\ \frac{d}{dx} \text{sech } x &= -\text{sech } x \tanh x \\ \frac{d}{dx} \text{csch } x &= -\text{csch } x \coth x \end{align}

Special Techniques

Implicit Differentiation

For equation :

Example: For :

Logarithmic Differentiation

For : \begin{align} \ln y &= g\ln f \\ \frac{1}{y}\frac{dy}{dx} &= g'\ln f + g\frac{f'}{f} \\ \frac{dy}{dx} &= f^g\left[g'\ln f + g\frac{f'}{f}\right] \end{align}

Parametric Differentiation

For , :

Second derivative:

Higher Order Derivatives

\begin{align} f'' &= \frac{d^2f}{dx^2} = \frac{d}{dx}\left[\frac{df}{dx}\right] \quad \text{(second derivative)} \\ f''' &= \frac{d^3f}{dx^3} \quad \text{(third derivative)} \\ f^{(n)} &= \frac{d^nf}{dx^n} \quad \text{(n-th derivative)} \end{align}

Partial Derivatives

For : \begin{align} \frac{\partial f}{\partial x} &= \lim_{h \to 0}\frac{f(x+h,y) - f(x,y)}{h} \quad \text{(hold } y \text{ constant)} \\ \frac{\partial f}{\partial y} &= \lim_{h \to 0}\frac{f(x,y+h) - f(x,y)}{h} \quad \text{(hold } x \text{ constant)} \end{align}

Mixed partial derivatives:

Common Derivative Patterns

\begin{align} \frac{d}{dx} e^{ax} &= ae^{ax} \\ \frac{d}{dx} \sin ax &= a\cos ax \\ \frac{d}{dx} \cos ax &= -a\sin ax \\ \frac{d}{dx} (ax+b)^n &= an(ax+b)^{n-1} \\ \frac{d}{dx} \frac{1}{ax+b} &= -\frac{a}{(ax+b)^2} \\ \frac{d}{dx} \ln(ax+b) &= \frac{a}{ax+b} \end{align}

Applications in Statistics

Likelihood Functions

Score Function

Fisher Information

Maximum Likelihood Estimation

Set and solve for