Idempotent Laws
A∪AA∩A=A=A
Commutative Laws
A∪BA∩B=B∪A=B∩A
Associative Laws
(A∪B)∪C(A∩B)∩C=A∪(B∪C)=A∩(B∩C)
Distributive Laws
A∪(B∩C)A∩(B∪C)=(A∪B)∩(A∪C)=(A∩B)∪(A∩C)
Identity Laws
A∪∅A∩U=A=A
Domination Laws
A∪UA∩∅=U=∅
Complement Laws
A∪ACA∩AC(AC)CUC∅C=U=∅=A=∅=U
De Morgan’s Laws
(A∪B)C(A∩B)C=AC∩BC=AC∪BC
Absorption Laws
A∪(A∩B)A∩(A∪B)=A=A
Set Difference Laws
A−(B∪C)A−(B∩C)A−B=(A−B)∩(A−C)=(A−B)∪(A−C)=A∩BC